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Abstract: This paper describes how Amalgame, a CORBA-compliant toolkit that supports
software and database integration, is extended to include two complementary services. These
are (1) “Activeness”: In broad terms this is the ability to specify rulebases and execution
models for them, possibly using a local persistent store; and (2) Multi-state Management: This
provides the ability to easily manipulate and access multiple, simultaneous states of a database
(or part of a database) and the deltas between them. A database programming language called
Heraclitus[OO] (abbreviated H20) is currently being implemented to support these services.
Two example applications of these services are described: mediators for data integration, and
enhancements to Amalgame to support sophisticated reasoning when combining and re-using
interoperating software components.

1 Introduction

Supporting interoperation of software and database components is one of the most pressing Computer
Science problems today. Current technologies focus on the development of standard architectures (such
as OSAs [Bla94] using CORBA [OMG90]) which include an extensible set of services (e.g., persistence in
the Texas Instruments Open OODB [WBT92]) that support the interoperation of entities manipulated
by service specific languages. As an example, the ODMG’93 [Cat93] industry standard Object Definition
Language (ODL), an extension of the OMG Interface Definition Language (IDL), allows the definition of
location transparent persistent entities. Manipulation of these entities is made possible via programming
language bindings to the ODMG’93 database language. Standard architectures are not currently addressing
higher semantic levels of interoperation, such as managing replication, reétructuring, and merging of data;
and intelligent configuration management such as the selection of reusable software components. In this

paper we show how OSAs can be populated to support these higher levels of interoperation.
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As a starting point, we use the CORBA-compliant Amalgame toolkit [FK93b, FK93a], which pro-
vides facilities to support the integration of new or pre-existing software applications and components. To
extend the scope of these facilities, we are now developing an object-oriented DBPL called Heraclitus[OO],
abbreviated H20, in order to support two fundamental H20-based services: (1) “Activeness”: In broad
terms this is the ability to specify rulebases and execution models for them, possibly using a local persistent
store. (2) Multi-state Management: This provides the ability to easily manipulate and access multiple,
simultaneous states of a database (or part of a database) and the deltas between them. We are using Amal-
game to build a variety of integration tools relying on these H20-based services, to support functionalities
such as data integration, incremental update of replicated data, and the intelligent integration of diverse
software components. The multi-state management service is being used to develop version management
tools in the context of software and groupware processes; it also forms an integral part of the activeness

service.

In Section 2 we describe how the H20 services are incorporated into the Amalgame toolkit. Section 3
describes the multi-state management service, and indicates how it can be used to support highly flexible
versioning in the context of configuration management. Section 4 describes how to use activeness in support
of semantic aspects of database interoperation. Section 5 discusses how the Amalgame toolkit itself is being

enhanced by using both activeness and multi-state management.

This work was influenced by a wide variety of research projects, including database programming
languages (DBPLs), interoperability tools, active database systems, and software environments. In con-
nection with DBPLs, the Heraclitus project [GHJ*T93, GHJ94] has developed a stand-alone relational
DBPL that incorporates deltas as first-class citizens. The H20 DBPL generalizes this by (i) providing
an object-oriented DBPL that supports the ODMG’93 standard Object Query Language and is built on
a persistent object-oriented platform; and (ii) providing much richer multi-state management capabilities,
that includes the notion of “alternatives”. Furthermore, (iii) H20-based services are integrated within an

OSA-compliant framework.

Most active database systems [MD89, CW91, STGP90, GJ91] support one or a handful of pre-defined
execution models for rule application. Because Heraclitus and H20 support deltas as “first-class citizens”,
they permit the specification of a wide variety of execution models. In conjunction with Amalgame, H20
provides the basis for constructing active modules. These are application objects (in the terminology of
CORBA, see Section 2) that incorporate a rulebase, an execution model, and possibly a local persistent
store. Thus, unlike active database systems, our framework can support active capabilities independently
of any database system. Active modules also appear to be richer than “active objects” in the sense of
[Buc93], because the execution models in active modules can access multiple virtual states, and because

they can act in the context of distributed, heterogeneous environments.

Activeness capabilities have also been incorporated directly into software engineering environments,
such as Marvel [HKBBS92] and GOODSTEP [CHCA94]. As with most active database systems, these

environments support fixed execution models. We feel that the H20-based multi-state management service



will be useful in these environments, both to help in managing versions of configurations, and for the purpose

of exploring alternatives during the process of selecting tools for creating software artifacts.

2 Incorporating H20 Features into an OSA-Compliant Frame-
work

In this section, we describe how we use H20 features in combination with current interoperability standards.

2.1 H20 with Respect to Existing Interoperability Standards

The goal of the H20 project is to provide multi-state support and activeness capabilities that can be
easily integrated into existing programming langnages. Multi-state support and activeness, along with
distribution, persistence, etc., are part of a collection of (orthogonal) paradigms which play an important
role in modern (database) software systems. However, building such systems on top of these various

paradigms constitutes a serious interoperability challenge.

To address this challenge, current industry and research trends are converging on a bottom-up stan-
dardization of interoperability. In particular, Object Service Architectures (OSAs) are a major emerging
trend in the systems software industry. An OSA [Bla94] consists of of a collection of independent software
services which interoperate via a software backplane or message passing bus. To adhere to this standardiza-
tion effort, we are implementing the H20 capabilities on top of the Amalgame framework [FK93a, FKB94).
Amalgame, which is being implemented at the University of Colorado, Boulder, is an application integra-
tion framework built on top of an OMG-compliant OSA. OMG’s OSA is also referred to as the “Common
Object Request Broker Architecture” (CORBA).

OMG has identified three broad categories of components which interoperate via an Object Request
Broker (ORB) through object interfaces specified using the CORBA IDL. The components identified by
OMG are: Object Services, Common Facilities, and Application Objects. Object Services provide basic
functions for realizing and maintaining objects (e.g., lifecycle, naming, persistence, etc.). Common facilities
provide general purpose capabilities, such as browsing and versioning, which are useful in many applications.
Finally, application objects are specific to particular end-user applications. OMG recently adopted the

ODMG’93 database programming language industry standard as a basis for its persistence service.

To allow the definition of distributed objects which are location-transparent, the Amalgame framework
implements a parser for the OMG’s IDL with various bindings to underlying RPC mechanisms {e.g., Q,
ONC RPC, Sun RPC, etc.). The Amalgame framework also provides IDL bindings to several programming
languages including ANSI C, C++, Modula-3, Common Lisp, and Ada. The Amalgame IDL parser is
currently being extended to accommodate the IDL-extended syntax of the ODMG’93 database language. I
These extensions will allow Amalgame to implement applications running on top of several commercial
ODMG semi compliant OODBMSs such as O2 [Deu90]. Based on these extensions, Amalgame will also



provide a C++ binding to ODMG’93 for the TT Open OODB, an extensible component-based database

system.

By incorporating H20-based services in the Amalgame framework, we can leverage off of the existing
distribution and persistence capabilities. H20-based services initially include “multi-state” support, and
“activeness”, The “activeness” service subsumes the “event” service specified by the OMG. We feel that
one of the contributions of the H20 project is to investigate candidate services for extending the sparsely
populated list of services specified by the OMG. Figure 1 illustrates the Amalgame OSA-compliant archi-
tecture extended with H20-based services and common facilities. This figure also gives examples of specific

application objects based on H20 and Amalgame capabilities.

/ Application Objects N 4 Common Facilities )
Amalgame Amalgame

e.g., Heterogeneous DB platform e.g., Amalgame integration engine,

(Pleiades, TI Open OODB) Bindings to various PL’s

H20 H20
e.g, Application specific mediators e.g., Domain specific rule packages
Amalgame/H20 Replicated data maintenance

Q' g., Pleiades/TI synchronization / \ Domain specific tools /

Amalgame OMG’s CORBA compliant backplane

Object Services
Amalgame H20
e.g., Amalgame integration services e.g., "Activeness"

Multi-State Management

Figure 1: The Amalgame/H20 OSA-compliant framework

2.2 Populating the Amalgame Framework with H20-based services

H20’s multi-state capabilities are provided via extensions to the ODMG’93 C++ binding. These exten-
sions, embodied in the H20 DBPL enable the definition and manipulation of database subschemas which
are subsets of classes in a database schema (see Section 3). Multiple, possibly hypothetical, “alterna-
tive” states of these subschemas and deltas between them can be created and manipulated at run-time.
The multi-state language extensions provide operators for specifying the nature of these alternatives and

characterize the differences between them in terms of deltas.



The H20 activeness service will provide extensions to the ODMG’93 C++ binding to configure and
program various rule execution models. These language extensions have not yet been finalized; however,
we have been experimenting with “activeness” by providing common facilities which can be used to build
“active modules” that drive specific applications (see Section 4). Since H20-based services are built as
components of the Amalgame OSA, and since Amalgame provides support for distribution and persistence,
active modules can therefore involve distributed and persistent components which all communicate via the
Amalgame ORB.

Although, we are currently focusing on multi-state and activeness services, we will extend the set of
H20-based services and/or common facilities in the future. For example, we are currently providing an
H20-based multi-state manager as a common facility in the Amalgame framework. This facility includes
domain specific rule packages, capabilities for selecting and defining rule execution models and hypothetical
alternatives managers, and other domain specific tools (such as query rewriting tools). Using the H20-
based common facilities and services, it becomes possible to develop application specific rulebases and
various types of “active” and “multi-state” modules. The resulting H20 applications are classified as new

Application Objects in our extended Amalgame framework.

3 H20 Multi-State Management: Deltas and Alternatives

In this section we describe the multi-state management object service built using the H20 DBPL and
give a brief description of its implementation. The H20 DPBL supports alternatives, which are essentially
different versions of a database state, and deltas, which correspond to the differences between database
states. As discussed below, alternatives and deltas may be defined relative to the full database schema or

to subschemas.

One important application of alternatives is to provide flexible version management, with easy and
natural mechanisms for context-switching between versions. To illustrate this, we will describe how alter-
natives can be used to represent and access in a transparent manner different configurations of a software

process. Another important application of alternatives is to provide hypothetical database access.

In addition to alternatives, H20 supports deltas, which correspond to the differences between alter-
natives. Deltas were originally introduced in the relational DBPL Heraclitus [HJ91, GHJ94]. Deltas can
be thought of as proposed updates that have not been applied to the database. Deltas are useful if the
difference between two alternatives must be analyzed, e.g., to determine how different the two alternatives
are, or to characterize some specific properties of that difference. Indeed, in most active database models
rule conditions can access the delta between the initial state of a transaction and the “current” state that
incorporates a user-requested update and the results of rules fired up to some point. Another important
application of deltas, which will be illustrated below, concerns merging two or more proposed updates.

Finally, in the current prototype of the H20 DBPL, deltas are used internally to support alternatives.
The H20 language constructs are general enough to be applicable to any C++-like host language. We
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Figure 2: Class hierarchy for example schema

have chosen to use the ODMG’93 C++ binding as the host language for the prototype implementation.
The ODMG standard defines the following sublanguages:

e ODL - Object Definition Language
¢ OML - Object Manipulation Language
e OQL - Object Query Language

We use the notation H20[zzz] to refer to a particular host language zzz extended by H20 constructs. For

example H20[ODL] refers to the H20 extension of the object definition language.

We introduce the H20-based multi-state management service and its implementation in four stages.
First, we describe the notion of subschemas relative to which alternatives and deltas are defined. Next,
we introduce and illustrate the notion of alternatives and show how they correspond to differing states of
a particular subschema. We then introduce deltas, which capture the differences between alternatives or
database states. We close with a brief description of how these constructs are implemented in the prototype

currently under development.

As an example we use a simple process model for testing software artifacts. The model represents
tools such as compilers and linkers, configurations of these tools, and profiles obtained by testing artifacts
that are processed using these configurations. The classes used in this example are shown schematically
in Figure 2. To keep the number of classes in this example small we have followed the style of object-
oriented programming, and used inheritance to incorporate graph properties into artifact and tool objects.
In a more database-oriented approach, software objects would not be subclasses of ProcessNode, and each

Processlode object would use an attribute to indicate which artifact or tool is associated with it.

3.1 Schemas and Subschemas

In many applications it is useful to build alternative states and deltas for some restricted part of the
database schema (class hierarchy), rather than of the whole schema. In H20, both alternatives and deltas
may range over the full schema, or over parts of it. We define a subschema to be a subset of the classes

which make up the schema, with the restriction that all subclasses of any class in a subschema are also



included in that subschema. To illustrate, in our example it is useful to model different configurations
by using alternatives that range exclusively over a subschema which includes the ProcesslNode class and
- its subclasses, and also the ProcessModel class (see Figure 2). In this subsection we describe how H20

schemas and subschemas are specified.

An H20 schema is defined by writing the interfaces to the classes and specifying subschemas in

H20[ODL]. A partial declaration of our example schema follows.

interface Processlode {
attribute Set<ProcessNode> inputs;
attribute Set<ProcesslNode> outputs;

};

interface ProcessModel {
attribute Set<ProcessNode> start_nodes;
attribute Set<ProcessNode> terminal_nodes;

¥

interface Profile {
attribute integer cpu-time-used;
attribute List<integer> trace;
attribute alternative<ProcessSchema> config-used;

There are no H20 extensions to the ODL class interface declarations. (The use of the class type
alternative in an attribute of class Profile will be discussed shortly.) For the sake of brevity we have
omitted the method declarations for the above classes. Method signatures will be given below as needed.

In addition, the interfaces of the other classes given in Figure 2 are omitted.

The H20[ODL] also extends the ODMG’93 ODL by including a syntax for the specification of sub-
schemas. The following example defines three subschemas. ProcessSchema groups the classes which define
a process model, namely ProcessModel and ProcesslNode. Subschema ProfileSchema consists of the
single class Profile. Instances of Profile capture data about executions of a specific process model. The
final subschema ProcessiAndData is actually the entire schema, defined as the union of the previous two
subschemas. When specifying subschemas, it is not necessary to explicitly mention subclasses of already

included classes.

subschema ProcessSchema { ProcessModel, Processliode };
subschema ProfileSchema { Profile };
subschema ProcessAndData { ProcessSchema union ProfileSchema };

Alternatives and deltas are generic types parameterized to operate over any declared subschema.
Declaration of a subschema results in the implicit instantiation of an alternative class and a delta class
whose instances operate on that subschema. We use the syntax of C++ templates; the subschema over

which instances of these classes operate must be supplied when the class is declared.



OID f1 OID c¢3
class File class Compiler \\

OID 15 0ID f6
class Linker class File

0ID f2 OID c4 7
class File 7| class Compiler

Figure 3: Process model in alternative config[0]

The following code defines arrays of alternatives and deltas which operate on the ProcessSchema

subschema.

alternative<ProcessSchema> configl4];
delta<ProcessSchema> deltal4];

Since the alternative and delta data types are classes, instances of these types can be created and
destroyed using the C++ new and delete operators. They can also be manipulated through pointer values,
arrays, and other C++ constructs. As illustrated in the class Profile above, they may serve as attribute

values.

- 3.2 Alternatives

We consider now alternatives and the operators provided for them, and indicate some applications of them.
There are two basic operators for alternatives: under, which permits execution of code in the context of
an alternative; and spawn, which creates a new alternative from an existing one. The H20 constructs for
manipulating deltas and alternatives are part of H2O[OML]. Some constructs such as under for alternatives

and when for deltas can also be used in H20[OQL]. The examples given below will use the following variable.
ProcessModel theModel;
We assume for this example that the database state currently holds only one object m0 of type ProcessModel,

and 1t has no start nodes and no terminal nodes.

The examples below will use the following functions:

e InitProcesslodel() — Initializes the process model m0 to the state shown in Figure 3.

e AddPreprocessor() — Adds a preprocessor node between the node holding OID £2 and the node
holding OID c4.

e ChangeCompiler() — Replaces the compiler ¢4 by the compiler c8.

An alternative is created by executing a database update inside a spawn command. The following

code creates an alternative in which the process configuration appears as in Figure 3. The keyword root



indicates the actual state of the subschema in the database; we are assuming for this example that root

holds only one object, namely m0.

from root spawn configl[0] { InitProcessModel(); }

The state of the database when viewed through alternative configl[0] is given below. We shall use
a simple notation for describing states: each object is described by its class, followed by its OID and a
-list of attributes in parentheses. The attributes are listed in the order specified in the object’s interface
declaration. The first object given above is a File with OID f1. Its set of input nodes is a null set and

its set of output nodes is the set consisting of the Compiler object with OID c3.

database objects:
File(fi: { ¥, { ¢c3 })
File(£2: { }, { c4 })
Compiler(c3: { £f1 }, { 158 })
Compiler(c4: { £2 }, { 156 })
Linker(15: { c3, c4 }, { £f6 })
File(f6: { 156 }, { })
ProcessModel(m0: { f1, £2 }, { f6 })

An alternative state can be accessed by the under operator. Suppose that variable one node holds
the OID £2. The following code accesses the output nodes of object £2 in alternative config[0]. Thus,

it returns the set containing OID c4.

under configl0] {
Set<ProcessNode> fileOutputs;
fileOutputs = one_node.outputs;

Importantly, the under operator permits a programmer to use (possibly large) existing code fragments
in the context of a selected alternative. Furthermore, the specific alternative that a code fragment is run
against can itself be determined at runtime. Code executed within an under may modify the associated
alternative. For example, the expression under configl0] { AddPreprocessor() } has the effect of

~modifying the value of the alternative identified by config[0].

Alternatives can be spawned from any pre-existing alternative. The folloWing code creates a new
alternative by inserting a preprocessor node in front of the compiler with OID c4 in the process configuration
which exists under alternative config[0].

from configl[0] spawn config[i] { AddPreprocessor(); }

The database state described by alternative configl[1] is:



database objects:
File(f1: { }, { 3 })
File(f2: { }, { p7 1)
Compiler(c3: { f1 }, { 15 })
Compiler(c4: { p7 }, { 15 })
Linker(16: { c3, c4 }, { 6 })
File(f6: { 15}, { })
Preprocessor(p7: { f2 }, { ¢4 })
ProcessModel(m0: { f1, £2 }, { £f6 })

One of the important benefits of alternatives is the ability to easily switch between different hypothet-
ical states of the database. The following code creates four alternative configurations of the process model
and then executes each configuration and records a profile of its execution. (We are assuming here that
the class ProcessMode includes a method Execute for creating the trace of a configuration and a method

time_used) for determining the cpu time used.)

from root spawn configl[0] { InitProcessModel(); }
from config[0] spawn configl[1] { AddPreprocessor(); }
from config[1] spawn configl[2] { ChangeCompiler(); }
from configl[0] spawn configl[3] { ChangeCompiler(); }

Profile run_results[4]
for (i=0; i<4; i++)
under configli] { run_results[il.trace = theModel->Execute();
run_results[i].config_used = configl[il;
run_results[i].cpu_time = theModel->time_used(); }

A much richer application of alternatives is to use them to store different versions of a process program
(that might be represented using Petri-nets or some other formalism). A table could be maintained that
indicates, for each execution of the process program, which alternative should be used when moving that
execution through different steps of the program. An execution might use a fixed alternative for its lifetime,
or might use newer alternatives as they become available, if they are compatible with the history of the
execution so far. Because multiple executions will be occurring concurrently, the multi-state manager must

switch contexts between different alternatives.

3.3 Deltas

Deltas are useful in contexts where differences between states or alternatives need to be analyzed. Two
primary applications are in active modules and databases, where rule conditions examine deltas, and in
long transactions, where (partial) updates need to be compared for conflict and possibly merged. Also,
in the current prototype implementation of the H20 DBPL, deltas are implemented as a primitive, and

alternatives are implemented using them.

There are five basic operators involving deltas: (a) deltification and (b) inverse deltification, which

provide a straight-forward mechanism for creating delta values. (c) apply, which applies a delta to a given

10



state or alternative. (c) when, that allows hypothetical access to deltas (the expression E when § yields
the value that side-effect free expression E would take in the state or alternative that would arise, if delta
§ were applied to the current state; this may be root or an alternative specified by the context. Finally,
(e) smash, a binary operator on deltas that yields a new delta corresponding to the effect of applying the
first delta followed by applying the second one. Operators for merging deltas are also of interest, and are

typically application dependent.

In the following we use the same example as for alternatives, primarily for the sake of brevity. It

should be stressed, however, that deltas can be used quite independently of alternatives.

A delta may be defined by using the deltification operator. Any operation enclosed in [< >] brackets
is hypothetically executed and the delta value required to reach that hypothetical state is returned. The
following code creates a delta which corresponds to the changes required to reach alternative config[1]

from alternative configl0].
under configlo] { deltal1] = [< AddPreprocessor(); >1; }
Inverse deltification, denoted by [> ... <], is also supported. For example, the code

delta<ProcessSchema> inv_delta;
under configl0] { inv_delta = [> AddPreprocessor(); <1; }

will update the alternative referred to by config[0] according to AddPreprocessor, and record in inv.delta

a delta value that will map this new alternative back to the original one.

In H20, delta values are sets of atomic inserts, deletes and modifies. The value of inv_delta is:

inv_delta = {
mod File(f2: { }, { c4 }),
mod Compiler(c4: { f2 }, { 15 }),
del Preprocessor{(p7)
}

Intuitively, a delta value can be viewed as a partial evaluation of a code fragment. This is useful if
a delta is to be accessed repeatedly, as might arise in a series of hypothetical inquiries against the delta,
or as might arise in the context of rule application in'an active database [GHJ94]. In such cases, the code

fragment is partially evaluated only once, and then repeated access to the delta value can be optimized.

The changes specified by a delta value can be realized by the apply operator. Thus alternative
config[1] could have been created by the following code. '

from configl0] spawn configlil { apply deltalil; }

11



The changes required to reach the four hypothetical states that were defined above using alternatives

above can be captured using deltas as follows:

deltal[0] = [< InitProcessModel(); >]

deltal1] = [< AddPreprocessor() when deltal[0]; >];

deltal2] = [< ChangeCompiler() when (deltal[0] smash deltal1]); >1;
deltaf3] = [< ChangeCompiler() when deltal[0]; >];

As an example, configl[2] can be obtained from root by first applying deltal[0] and then applying
deltal[1]. Note the use of the smash operator in delta[3]; this creates a delta corresponding to the
updates of delta[0] followed by the updates of deltal[1]. (Another operator, compose, is also needed in

some contexts; we omit discussion of this here due to space limitations. See [GHJ94].)

The when operator provides hypothetical access to the state that would result if a delta were applied.

The following code is equivalent to accessing the outputs of the node one node under alternative configl1].

under configl0] {
Set<Processliode> fileOutputs;
fileOutputs = one_node.outputs when deltali];

A different value for fileQutputs would be obtained if delta[3] were used in place of delta[1].

We now illustrate how deltas can be used in connection with combining two or more proposed updates
to a state or alternative. Suppose that two different engineers are updating config[1], one by applying
AddPreprocessor() and the other by applying ChangeCompiler (). In general it is difficult or impossible
to determine whether two proposed updates conflict with each other, when they are specified as proce-
dures. In contrast, suppose that the two delta values corresponding to the application of these procedures,
le., deltal1] and deltal[3], are computed. Using a binary merge operator that takes into account the
semantics of the subschema ProcessSchema (space limitations prohibit a formal definition of this operator
here), these can be merged to form a new delta that corresponds to the union of these changes. The result

of such a merge is given as merge.1_3. (The value of deltal[1] was given above).

deltaf3] = {
mod Linker(15: {c3, c8 F, { f6 }),
mod File(£f2: { ¥, { ¢c8 }),
ins Compiler(c8: { £2 }, { 15 }),
del Compiler(c4)
b

merge_1_3 = {
mod File(£2: { }, { p7 }),
ins Preprocessor(p7: { £2 }, { c8 }),
mod Linker(15: { ¢3, c8 }, { f6 }),
ins Compiler(c8: { p7 ¥, { 15 }),
del Compiler(c4)
i)

12



Importantly, the two alternatives configl[1] and config[3] alone cannot be used to compute the
net change to configl[0] that corresponds to the union of deltal1] and deltal3]. This kind of delta
merging is especially relevant in the context of long transactions, where it is inappropriate for any one user

to lock substantial portions of the database for long intervals.

We now present one form of interplay between alternatives and deltas. In some applications involving
many alternatives, it is useful to provide an operator diff on pairs of alternatives, where diff(al,a2)
returns the delta value that would map alternative al to alternative a2. In the general case, computing
diff may be prohibitively expensive. However, if the alternatives are built up from a common root using
the spawn operator, then a reasonably efficient implementation of diff can be supported. In particular,
a tree can be maintained that corresponds to the history of how the alternatives where spawn-ed. For
each edge of the tree, two deltas are maintained, one being the deltification of the code that created the
new alternative, and the other being the inverse-deltification of that code. Now the diff between two
alternatives can be computed by smash-ing the sequence of deltas and inverse deltas on the path from the

one alternative to the other.

3.4 Implementation of the Multi-State Mlanagement Service

To further indicate the semantics of deltas and alternatives, we give a brief sketch of the current proto-
type implementation of the H20 multi-state management service. The implementation includes a library
defining a context manager and a preprocessor that modifies the implementation of all classes that are
included in any declared subschemas. The preprocessor also translates H20[zzz] code into the DBPL of -
the underlying database system. Figure 4 shows some of the objects that our prototype would create in
connection with the preceding examples. In this figure we have used variable names to denote some of the

deltas and alternatives, OIDs are actually used to identify all of these.

The H20 library defines a ContextManager class that maintains global information on the status
of delta and alternative creation and application. In our prototype, alternatives are implemented using
a tree, where the path from <root> to an alternative indicates the sequence of deltas that should be
applied to build the alternative. For example, in Figure 4, the alternative <config[2]> is computed in
our prototype from system-generated deltas having OIDs d56, d57, and d58. In this example <root> is
the only alternative that serves as a “base” from which other alternatives are constructed; our prototype

implementation permits multiple “base” alternatives.

To prepare objects for versioning as arises in both alternative and delta creation, the H20 preprocessor
modifies the implementation of all classes that are part of declared subschemas. For each of these classes a
surrogate class is defined that maintains the same interface as the original class. Instances of the surrogate
classes maintain object identities and operate on behalf of all versions of the object which share that
identity. The surrogate object maintains a delta map that identifies the version of an object for all program-
or system-defined deltas. Figure 4 shows the surrogate and version objects for the File object with OID £2

that result from the preceding examples. When responding to any query or method, the surrogate object

13



accesses the global context information in the context manager. This context information determines
which deltas need to accessed to get the correct value for the object in the context of currently relevant
alternatives and/or deltas.

context switching
information from

H20 program (NULL) inputs: { }
¢ oID: £2 /ﬂ' outputs: { c4 }
Class: File e
Maintains various information, e inputs: { }
including ligt of existing deltas //" outputs: { p7 }
and alternatives; indication of <root> -
how alternatives are built from 356 > ////
deltas (shown below) :; inputs: { }
— . as7 - Y| outputs: { c8 }
<root> ,///’//
o ds59 —1
[:Tf d56 current <deltal0]> - inﬁftif {{} &)
<configl0]> outputs: c
. configl ]\ aso context <deltalll>] -l
57 - ~
A e <delta[3]> I )
<configlil]> <configl3]> N —am| inputs: { }
mexrge_1_3 outputs: { p7 }
ds8
L;gonfigtzﬂ Delta Map . Tl inputs: ()
TR - .

outputs: { <8 }

ContextManager

inputs: { )}
Surrogate Object outputs: { p7 }

Object Versions

Figure 4: Context manager and object versions

4 Using Active Modules for Database Interoperation

This section briefly illustrates how active modules can be constructed using H20 and the Amalgame toolkit.
The examples presented are taken from the domain of database interoperation; we have also developed

examples in the domain of software engineering [Dal94].

In terms of an OSA-compliant architecture, activej modules can be viewed as application objects
that use the activeness service in the context of a particular application. The kernel of an active module
typically includes (i) a rule base that specifies most of the desired semantics in a relatively declarative
fashion, (ii) an execution model for applying the rules, and possibly (iii) a local persistent store. These
can be viewed as independent components that are running on a single system, or on distributed systems.
Communication and other necessary interoperation features for active modules are implemented using the

Amalgame toolkit.

The different parts of the kernel of an active module can be written using the H20 DBPL. Active
modules differ from most active database systems currently described in the literature in two important
ways. (a) The first of these is that at a semantic level, the H20 DBPL permits the specification of a
wide variety of execution models (e.g., simulating the execution model of STARBURST or POSTGRES).
This is useful because different execution models appear to be better suited for different applications

[CCCR190, Dal94]. One of the primary reasons that the H20 DBPL can be used to specify a wide variety
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of execution models is because it supports alternatives and deltas (see [GHJ94]). In many cases, specific
execution models will be developed and maintained as common facilities, and used by many applications.
{b) The second fundamental difference is at the systems level. Active modules are not integrated into a
DBMS, but rather can be developed and used as independent components working together with essentially
arbitrary database and/or software systems. To be most effective, active modules typically assume that the
other systems can automatically generate messages, indicating state changes and other important events
that are sent to the active module, i.e., that the other systems have minimal activeness capabilities. When
working with legacy systems, this minimal activeness might be implemented by lightweight Amalgame
wrappers; alternatively, the active module might periodically poll a legacy system to learn about important

events.

We now present an example that illustrates several aspects of active modules. This example is moti-
vated in part by a practical need for supporting interoperation between the Pleiades object manager [TC93)
and the TT Open OODB. Pleiades is an Object Management System being developed by the Arcadia team
at UMass, and tailored towards supporting Software Engineering Environments. The TI Open OODB is
an extensible component-based database system. We focus here on an example with very simple semantics,
but it will be clear that much richer semantics, as might arise in a software engineering or real database

context, can be supported.

The example assumes that a Student database is implemented using Pleiades and an Employee
database is implemented using the TI Open OODB. The schemas of the two databases are shown in
Figure 5. We suppose for the example that the Employee database wishes to import information about
students (say, their majors) that happen to be employees. An active module, called here SE_Mediator,
will monitor the contents of the two databases, and keep the Employee database informed about relevant
changes to the student database. Subsection 4.1 below discusses how the semantics of SE_Mediator are
implemented, and Subsection 4.2 discusses how the Amalgame toolkit is used to integrate SE.Mediator

into a runtime environment with the two databases.

interface Student { interface Employee {
extent Student; extent Employee;
attribute string studName; attribute string emplame;
attribute integer[9] studID; attribute integer[9] SSN;
attribute string major; attribute string dept;
attribute string local_address; attribute string address;
attribute string permanent_address; ¥;

s

Figure 5: Schemas of Student and Employee

15



4.1 Capturing Semantics in an Active Module

A host of issues are raised when attempting to integrate information from diverse databases in a practical

context. We focus on two fundamental semantic issues here:

(a) Ways to identify corresponding pairs of objects from the Student and Employee databases, and how

to maintain this information efficiently.

(b) (Because approaches to item (a) involve having the active module store some data replicated from

the two source databases), ways to incrementally maintain replicated data.

Other semantic issues that are easily supported using active modules are constraint maintenance, and

notification of the source databases if certain conditions arise.

With regards to (a), in some cases the problem of identifying correspbnding pairs of objects from
different databases can be straightforward, while in other cases this can be intractable or even impossible.
We shall consider a relatively straightforward case here. Specifically, we assume that a student object and
an employee object correspond (i.e., refer to the same person in the world) if their names are “close” to
each other according to some metric (for instance, if middle names or initials are present or absent), and

if the address as employee matches either the local or permanent address as student.

Determining corresponding pairs of objects, such as those in the class Matches, can be quite costly.
It is often cost-effective to materialize and maintain information about the correspondences once found.
On the other hand, the information about students to be imported by Employee might be supported in a

virtual or a materialized fashion.

In a general design to support the integration of object classes from two databases, the local persistent
store of the active module will hold three categories of classes, namely Ezport classes, a Matches class, and
Auziliary Data classes. For this example, the Auziliary Data classes include: Stud—-Emp (to be read “student
minus employee” ), with all attributes relevant to forming a match, namely studName, local_address, and
permanent address. (We assume here that studName serves as a key for the class Student, otherwise
some key information should also be included in Stud-Emp.) Emp-Stud will have attributes for empName
and address. The single Ezport class is Stud&Emp, with attributes studiame, empName, and major Class
Matches’s attributes are the union of the attributes of Stud-Emp and Emp-Stud. Speaking intuitively,
Matches will hold one object for each person who is both a student and an employee; Stud-Emp will hold
one object for each student in Students who is not an employee; and analogously for Emp-Stud. Stud&Emp
will hold one object for each object in Matches, along with the major and department attributes. (In

practice, Matches and Stud&Emp might be combined into one class.)

How can we maintain the four classes in the active module SE_Mediator? There are two basic issues:
(i) importing information from the two source databases and (ii) correctly modifying the contents of the
four classes to reflect changes to the source databases. With regards to (i), we assume that SE_Mediator

has ports assigned to both source databases over which updates are reported. (The details of this are
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discussed in Section 4.2 below.) A rule-base can be developed to perform (ii). Some representative rules

for doing this, written in a pidgin H20 rule language, are

R1: R2:
on message_from_Student_database on insert into Stud—Emp(x: sn, ladd, padd)
if insert Student(x: sn,sid,maj,ladd,padd) if (exists Emp-Stud(y: en, add) &&
then [insert Stud-Emp(new: sn, ladd, padd); sn is "close" to en &%
pop Student_database_queue]; (add=1ladd || add = padd)
then [delete Stud-Emp(x);
R3: delete Emp-Stud(y);
on insert into Matches(x: sn,ladd,padd,en,add) insert Matches(new: sn,maj,en,dept)];
if TRUE

then [insert Stud&Emp(new: sn, en, _)];

The full rule base would include rules for finding the major of matched student employees (assuming
these are materialized), for communicating changes to Stud&Emp to the Employee database, and for handling
inserts, deletes and modifies arising from either source database. Although the above rules only consider

individual objects, the execution model might apply the rules in a set-at-a-time fashion.

In general, very complex heuristics can be incorporated into the rulebase for performing the matching
activity. Some heuristics might be history-dependent (e.g., once a student employee match is made, then
the requirement that addresses match can be dropped). Because of its declarative nature, it is relatively

easy to modify the rulebase to reflect changes to the heuristics for identifying matches.

We now briefly consider issue (b), that of incrementally maintaining the replicated data in the active
module SE_Mediator. In our example the replicated data are essentially projections of classes from the
source databases, although much more complex restructures can be supported. Maintaining replicated data
is closely related to the problem of incremental maintenance of materialized views. Indeed, [Cha94, CW91]
provide some solutions to this problem that use active database technology. In both papers, it is assumed
that the source database is a full active database systemn; as noted above, active modules can be used
in connection with databases having only very modest active capabilities, or no active capabilities at
all. Active modules can maintain replicated data in a variety of ways, ranging from periodic polling of
the source databases, to polling the source databases based on simple messages received from them, to

receiving explicit bulk deltas from the source databases. This is explored in more detail in [ZHK95].

4.2 Integrating active modules into a runtime environment

We will now show how to integrate the semantics of the active module described above into a runtime
environment. We first describe the desired run-time architecture and illustrate the use of Amalgame to

generate a corresponding distributed program.

As mentioned earlier, we are interested in generating an active module which acts as a mediator
between Pleiades and T1 applications sharing a replicated data subset maintained in the local persistent

store of SE_mediator. Our Pleiades application manipulates a student database for a University, while
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the TT Open OODB application manipulates an employee database for the same University. Based on
the semantics described in the previous section, our active module will monitor changes to the student

database, determine whether these changes also affect the employee database.

Due to space constraints, we will not describe the construction of the Pleiades and TI applications.
These applications, as well as the H20 active module, are encapsulated into Amalgame application objects.
Both applications can communicate asynchronously with the H20 active module. The Pleiades application
performs updates to the student database and notifies SE_mediator accordingly; SE_mediator propagates
relevant updates to the employee database. The TI Open OODB application acts as server which can
process update messages forwarded by SE_mediator. It is clear that this scenario could be extended to

accommodate Pleiades and TI applications performing simultaneous updates.

- The applications use the transaction mechanisms provided by the Pleiades and TI systems to ensure
data integrity. To simplify our presentation, we assume that messages are always processed successfully
so that our application can operate in a non-blocking and fully asynchronous execution mode. Figure 6

illustrates the role of our active module in the replication scenario described above.

As described in the previous section, H20 provides three components to implement the semantics of
our active module. These components are: (1) a rulebase, (2) an execution model engine, and a (3) a
local database. In our experiment, the rulebase is implemented as a file which contains the various rules
specified in the previous section. This proposed implementation facilitates dynamic modifications to the

rulebase, however it is clearly unefficient and only appealing in the scope of a prototype.

The execution model engine and the local database access module are provided as H20 executables
programs. The execution model engine is implemented as a procedure which is activated upon receipt of

a message {rom SE_mediator the H20 active module. The signature of this procedure is as follows:

execution_model_engine(execution_model:String,
rulebase:String,
local_store: String,
message_parameters:Parameter_Types)

where message parametersis a place holder for application dependent parameters such as request_type,
student, employee, target database, and source.database. The execution model engine provides a
workspace to hold instances of the variables involved in the various update requests. It also provides an
H20 rule language interpreter for evaluating and executing the various rules. The execution model engine
controls the execution of rules extracted from the rulebase. The various rules operate directly on top of

the local database.

Based on the above H20 components, we can use the Amalgame toolkit to generate an active module
that implements the functionality illustrated in Figure 6. Basically, the Amalgame toolkit provides an
object service and a set of common facilities to support the integration of new or existing application

components. The Amalgame object service supplies a high level specification language, called ASL. It
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also provides an ASL interpreter that operates on top of a common facility called the Amalgame engine.
An Amalgame engine provides the semantics for representing, storing, and interconnecting heterogeneous
application components. Amalgame engines can be implemented in different ways. In this section, we are

9939

using the original Amalgame engine. In section 5, we describe an “active”” version of the Amalgame engine
which can also reason about valid component interconnections. The Amalgame ASL script for specifying

and generating the runtime scenario described above is presented in Figures 7, 8, 9.

SE_Mediator application object

Local

Execution .
persistent

store

model

A . A
Update ' Replication Update
notification imaintenance requests: propagation
v v
/" Pleiades /[ TIOODB
application application
object object

Student Employee
updates updates

Figure 6: A Run-time scenario for replicating data across heterogeneous databases
Figure 7 illustrates the ASL commands that create an Amalgame environment to contain the class of

H20 active modules. Active module subcomponents are composed of ASCII, C, or C++ components. An

H20 active module interface is specified using IDL.

Tigure 8 illustrates the specification of resulting H20 active component uses TCP sockets, Q, and is

written in C+4+.

Figure 9 shows the specification of the various subcomponents of an H20 active module. Pointers to
H20 binaries and files are provided. The C++ implementatibn for the “request” method of SE_mediator

is also specified.

Finally, the following ASL command generates an application object instance SE_mediator.

Generate Runtime A_H20_MODULES
As SEmediator
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Attach Environment H20.MODULES

With "UNAME: Sun0S-demo-4.1.3-2-sun4c",
"ISL:IDL",
MUSL:ASCII,C,C++"
To "A_H20.MODULES"
With Interface l— >
interface Student {
.0

}

interface Employee {
G.0

interface A_H20.MODULES {
request (request_type:Integer,
student:Student,
employee:Employee,
source_database:String,
target_database:String
) raises (requestfailed);

}

<
Figure 7: Creation of an Amalgame environment

5 Using H20 Multi-state and Activeness Capabilities to Sup-
port the Integration of Software Systems

In the previous sections, we illustrated H20 capabilities via separate examples. We first demonstrated the
use of H20 multi-state capabilities through a simple process model for testing software artifacts. Then,
we illustrated the use of H20 active capabilities to support database interoperation. In this section, we
describe and illustrate how H20 multi-state and activeness capabilities are being combined to support

enhancements to the Amalgame application integration framework.

In its original implementation, Amalgame provides a high level specification language, called ASL, to
assemble heterogeneous programs from new or existing pieces of software, which may of may not have been
designed to interoperate. For Amalgame to use existing pieces of software, these must first be encapsulated
into Amalgame “components” using an ASL command. The encapsulation process consists in specifying
a class which describes the component to encapsulate, using the underlying Amalgame data definition
language. The corresponding piece of software is then mapped into an instance of that class. As a result,
the encapsulation process creates Amalgame application schemas which act as containers for the various
software pieces which have been encapsulated. Other ASL commands can then be used to manipulate and

assemble components within a single or across multiple schemas.

We are currently rewriting the Amalgame engine using the H20 DBPL. For example, H20 subschemas

are used to implement Amalgame subschemas which correspond to subassemblies of components within
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Attach Extension To A _H20 MODULES
0f Type "TRANSPORT"
Specified In "TCPSQCKET"

Attach Extension To A_H20_MODULES
0f Type "RPC_PROTOCOL"
Specified In ngr

Attach Extension To A_H20_MODULES
0f Type "PROGRAMMING LANGUAGE"
Specified In "C++!

Figure 8: Specification of the Amalgame operational environment

an Amalgame schema. H20 alternatives provide a mechanism for creating multiple instances of a given
Amalgame schema. For example different sort routines can be represented as different alternatives. Finally,
the H20 multi-state manager is used to maintain the information required for accessing existing alternatives

corresponding to a given schema.

In the original Amalgame implementation, users had to provide hand coded component wrappers, also
called “modifiers”, to specify context dependent transformations to apply to components so that they could
play a different role in various application instances derived from a given schema. In the enhanced version
of the Amalgame engine, we are using H20 deltas to represent the Amalgame modifiers. Deltas represent
the differences, in terms of Amalgame modifiers, between multiple alternative instances of an application
corresponding to a given Amalgame application schema. As an example, let us consider a generic sort
routine C encapsulated in an Amalgame schema. To apply C to an- array (resp. a list) of integers, we
need to provide a variant C1 (resp. C2) that apply to an array (resp. a list). The resulting encapsulated

components C1 and C2 are represented using H20 alternatives.

As users specify new application schemas by assembling various subschemas and create correspond-
ing alternatives, it becomes necessary to check the validity of proposed interconnections in the various
contexts. An H20 active component is being added to the Amalgame engine to help reason about valid
interconnections. Also, H20’s hypothetical states are a useful mechanism to investigate potential valid

component interconnections.

Another H20 active component is being ﬁsed to support efficient context switches between alterna-
tives by applying the appropriate deltas to the selected alternatives. Indeed, Amalgame modifiers are
implemented H20 rules. Different execution models can be provided to implement efficient complex trans-
formation functions between alternatives. The pidgin H20 rules below illustrates the alternative context-

switching situation.

on alternative_switch_detect
if current_context = specific_alternative
then switch_to_specific_alternative;
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Encapsulate From  H20_MODULES

Type Is ""SUB_COMPONENT"
In "A_H20 MODULES"
As RULEBASE.rulebase 1:FILE,

EXECUTION.MODEL.executionmodel_ 1:BINARY,
DATABASE MODULE.databasemodule_1:BINARY
From \H20\demos\rulebase,
A\H20\demos\exec_model.o,
\H20\demos\db_module.o
With Specification |— >
request(request_type, student, employee,
source database, target.database) {
executionmodel.engine ("SEQUENTIAL",
"\ H20\demos\rulebase”,
request_type,
student,
employee,
source.database,
target.database);
return_abnormally(exception);
return() ;

}

< -
Figure 9: Specification of subcomponents for the H20 module

apply_specific_alternative_routine;

Both the H20 multi-state management and activeness capabilities are used at design time by the
modified Amalgame engine to create valid applications. Additionally, it is possible for Amalgame generated
application to include the multi-state management and activeness module to perform context switches and
reason about valid interconnections at runtime. The following example illustrates a particular case of

reasoning that can be performed to partially automate the generation of software systems.

To illustrate the use of H20’s activeness in Amalgame let’s consider the support of type discovery.
When a method my4 (of component A) with signature o4 is invoked by another component B, the param-
eters passed to my4 should match the signature of my4. In the original version of Amalgame, application
programmiers had to supply a modifier for each component context so that the behavior of the component
could be adapted when switching context. For instance, suppose that m4 is the call interface for a sort
routine which takes an array as a parameter. It is possible to support the passing of a list as a parameter
in a different alternative as long as there exists a modifier to transform the list into an array in the second
alternative. An H20 active module can be used as an inference engine to detect type mismatches and
automate the type translation based on information stored in an underlying rulebase. The H20 rule below

shows how to handle this type of situation.
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on call_to_method(name, sign(name), params)
if not compliant (sign(name), params))
then translate (params, sign(name))

An H20 active module could also be used to select an alternative sort routine to handle lists in the
above example. Basically, the H20 activeness capabilities subsume the late binding of object-oriented

language while providing added flexibility in terms of modeling of alternatives.

In summary, we have shown briefly how H20 is being used to implement a improved version of the
Amalgame engine which is being architected as an active and multi-state module. Although the Amalgame
user interface, and overall storage and management of components are unchanged, the H20 multi-state
engine replaces the Amalgame transformation driven context switches by database driven context switches.
Basically, Amalgame components which used to be passive are now implemented as active database objects.
Alternatives can be maintained internally or derived as needed. The overall benefit of using H20’s multi-
state management is overall efficiency, the existence of an underlying algebra of composition for subschemas,
and the ease of programming provided by the H20 DBPL syntax. Using H20’s activeness features allows
to reason about valid component interconnections using an extensible rule base. As a result, using a
combination of the H20 multi-state management and activeness services provides powerful support for

data and application integration.

6 Conclusion

The system described in this paper is currently under construction, with large portions already complete.
In particular, the Amalgame framework is mostly operational and fully OSA-compliant. Also, the kernel
of the multi-state manager of H20 DBPL has been implemented. We are currently developing the pre-
processor of the H20 DBPL, and designing some specific syntaxes for specifying rules. We have also
implemented [Dal94] several representative execution models and active modules using Amalgame and the
Heraclitus DBPL [GHJ94], a relational precursor of H20; we expect these modules to transition to the
H20 DBPL in a fairly straightforward fashion.

We are currently focusing on multi-state and activeness services, and application objects built using
them. We also plan to develop a number of common facilities that embody the multi-state and activeness
services. These might include domain specific rule packages, generic execution models, capabilities for
defining and selecting rule execution models and hypothetical alternatives managers, and other domain

specific tools (such as query rewriting tools).
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